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An analytical approach is developed to investigate the phase transitions and the dynamical behaviors in
dissipative two-state systems in a unified method for different bath indices with the view of understanding the
effects of environments and tunneling on the systems. Analytic expressions of the current correlation function,
the nonequilibrium correlation function, and the critical points of coherent-incoherent and delocalized-
localized transitions for various bath indices are obtained by implementing perturbation treatment and employ-
ing the Green’s function method. The phase boundaries can be precisely determined at both the scaling limit
and the finite bare tunneling. The results of the dynamical behaviors of the correlation functions are consistent
well with those of previous works and some well-established values are reproduced exactly. This theory is
quite simple and may be applied as a potential method to study absorption spectra and photoluminescence in

quantum dots and other confined quantum systems.
DOI: 10.1103/PhysRevB.80.214301

I. INTRODUCTION

The influence of dissipation on quantum coherence is a
crucial subject in the exploration of macroscopic quantum
phenomena and the dissipation-induced decoherence remains
the most important obstacle to the development of quantum
information and quantum computer. Efforts to deal with the
influence lead to the systematic study of the spin-boson
model, which offers a unique testing ground for exploring
the foundations of quantum mechanics and also serves as an
elementary carrier of information in a quantum information
processor in the form of a qubit.!> Recently, the upsurge of
interest in tunneling systems coupled to dissipative environ-
ment has renewedly stimulated extensive studies on the
physical properties of dissipative two-state systems.>® The
dissipative two-state system is important for understanding
numerous physical and chemical processes since it provides
a universal model for these processes and has been used to
describe a large class of problems ranging from Kondo im-
purities, superconductors, chemical reactions, to amorphous
materials.”® The main interest of these studies has been in
understanding how the environment influences the dynamics
of the system and, in particular, how the dissipation destroys
quantum coherence.” The very recent exploitations of the
properties of macroscopic quantum coherence in supercon-
ducting quantum interference devices, molecular magnets,'’
and entanglement of qubit with environment!! and qubits in
quantum computers'> conduce to further interest of theoreti-
cal studies on intrinsic physics of this system. While consid-
erable effort has been made to investigate the dynamic equi-
librium and nonequilibrium correlations and the Shiba’s
relation, it is theoretically and experimentally significant to
develop an accepted theory for the current correlation func-
tion, which contains useful information about excitation
spectrum and therefore has been utilized to investigate the
absorption spectra and photoluminescence in quantum dot'3
and the spin current in spin-cell device for spintronic
circuits.!* Since the two energy levels in this system cannot
be completely decoupled from its environment, dissipation
and decoherence effects are unavoidable.'> The effect of en-
vironment on small quantum systems can induce mediate
coupling of different electronic energy levels and results in
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many interesting phenomena. However, with the coupling to
environment the dissipative two-state system is difficult to
handle analytically, which has brought much uncertainty in
the interpretation of experimental data and has limited our
understanding of many interesting quantum phenomena of
these systems. Although the dissipative two-state system has
been dealt with by means of various analytical and numerical
methods,”®13-25 with respect to the current correlation func-
tion only numerical calculation has been performed.”*> An
analytical study will make it possible to have an insight into
the intrinsic properties of dissipative two-state systems.

In this work, we focus on the current correlation function
and the phase diagrams of dissipative two-state systems with
the view of understanding the effects of environment and
tunneling on the dynamic behaviors of the correlation func-
tions and the characteristics of the phase transitions. By de-
veloping an analytical approach, analytic expressions of the
current correlation function and the phase-transition points
are obtained. The validity of our theory is manifested by the
very well agreement of our results with that of numerical
calculations®? of the current correlation function and the suc-
cess in reproducing some well-established values well
known as results of the nonperturbation in Ohmic case. More
importantly, this mathematically simple and physically clear
method may provide an analytic method to investigate the
absorption spectra and photoluminescence in quantum dots
and other confined quantum systems. The paper is organized
as follows. In Sec. II, we introduce and diagonalize the
Hamiltonian by using unitary transformation to obtain the
ground- and the low-lying excited energy states. The equa-
tion determining the critical point of localized-delocalized
phase transition is obtained. In Sec. III, by means of the
Green’s function and the residue theorem, analytic expres-
sions of the current correlation function, the nonequilibrium
correlation function, the critical value of the coherent-
incoherent transition point, and the Q factor are obtained.
The calculated results for different environments are pre-
sented and discussed In Sec. IV. In Sec. V, the properties of
coherence-incoherence and localized-delocalized phase tran-
sitions are studied and the phase diagrams are illustrated.
Finally, a brief summary will conclude our presentation in
Sec. VL
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II. MODEL HAMILTONIAN

The dissipative two-state systems representing tunneling
phenomena in condensed phase are often described by the
spin-boson model,”?

1 1
H=_5Aa-x+2wkbzbk+ EE gk(bz-’-bk)o-l’ (1)
k k

where A is the bare tunneling matrix element, o; (i=x,y,z)
are the usual Pauli spin matrices, w; are the oscillator fre-
quencies, and g, is the strength of coupling of the system to
the bath represented by an infinite set of harmonic oscilla-
tors, which are created by boson operators b, and b,T(. The
effects of the bath and the coupling are completely charac-
terized by the spectral density

J(w) = E gi&(w —wy) = Zawi_swsﬁ(wc -w), (2)
k

where 6(x) is the usual step function and the index S denotes
the different environment baths. The assumption of the envi-
ronment bath reduces the characteristics of the bath and the
coupling to two parameters: the dimensionless coupling
(damping) constant « and the upper cutoff w, of the oscilla-
tor frequency. Though the Hamiltonian (1) seems quite
simple, except for some special parameter values, it cannot
be solved exactly.? Therefore, various approaches have been
performed to this model and quite some progress in numeri-
cal methods has been done in recent years. The central tech-
niques in these works include, for example, quantum Monte
Carlo techniques,?’ quasiadiabatic path integral,® multilayer
multiconfiguration ~ time-dependent ~ Hartree  method,”
noninteracting-blip approximation, Bloch-Redfield equation
approach,’ the self-consistent hybrid approach,®' and nu-
merical renormalization group.’> However, up to now it is
still a challenge to develop an analytical approach to produce
correct physics in a unified way for various bath indices and
the whole parameter ranges 0=« and 0 =A< w,.

The isolated two-state system exhibits coherent tunneling
and is trivial to diagonalize. The coupling of the system to
the dissipative environment leads the tunneling between the
two states to lose its phase coherence. This can happen even
at zero temperature if the continuous spectrum of the macro-
scopic dissipative environment extends down to zero fre-
quency. The transition from coherent to incoherent dynamics
occurs at a critical damping a=¢,. To take into account the
coupling of the system to the bath, a unitary transformation
is applied to H,3*** H' =exp(A)H exp(-A), with the genera-
tor

A= E §k<bk b)o. (3)

The transformation can be done to the end and produces the
transformed Hamiltonian as

H'=Hy+H,| +H,, 4)

where

PHYSICAL REVIEW B 80, 214301 (2009)

1
Hy=-nbo+ 3 oblb -2 - Sgoog).
k

k4k

1 ;
Hy= EE g1 = &) + b)o, - ”A’U 2 gk(bk ~ b,
k

(6)

1
H)=- —Ao-x(cosh > ﬁfk(b/t —bp) (- 7])
2 W

k

1
- EAioy(sinh > —§k(bk -by) (- 772 fk(bT

k
- bk)) ~ (7)

For implementing perturbation treatment conveniently, the
transformed Hamiltonian is separated into three parts accord-
ing to their orders of the coupling strength. The first part H,
contains the zeroth-order terms of the transformed Hamil-
tonian, H { the first-order terms, and Hé the second as well as
higher-order terms. H;, is chosen as the unperturbed Hamil-
tonian and should include as more terms as possible to make
the perturbation more efficacious on the premise of keeping
it can be diagonalized exactly. H| and H) are treated as per-
turbation and they should be as small as possible. After col-
lecting together the terms of the same order, the bare tunnel-
ing matrix element A in H|, is multiplied by a factor

[0 ﬁS
— l S
ﬂ—eXP< 22 zgk)—exp< fo (WA+B)2 B)
(®)

Clearly, 0= n=1. Compared with Hamiltonian (1), the tun-
neling matrix element in the transformed Hamiltonian is
renormalized by the factor » due to the dissipative environ-
ment; therefore, the renormalized effective tunneling is given
by25

A, =nA. )

Because of the decoupled form of spin and boson operators,
H| can be diagonalized exactly and its eigenstate is a direct
, |){ni}), where |s) is |s1)— (1) or |s2)— (), ie,
the elgenstates of o, and [{n;}) means that there are ny
bosons for mode k. The ground state of Hy is |go)
=|s){04}), where |{0;}) is the vacuum state of bosons in
which n;,=0 for every k. Using the form of # given by Eq.
(8), one can get (go|H}|g¢)=0, i.e., the contribution of H) to
the perturbation calculation at second order of g, is zero.
For a certain value of the index S, the localized-
delocalized phase transition occurs at a critical value of the
coupling constant «;,”® which separates a localized phase at
a=q; from a delocalized phase at a<<q;. In the localized
regime, the tunnel splitting between the two levels renormal-
izes to zero, whereas it is finite in the delocalized phase. For
finite bare tunneling, when 7=0 the renormalized tunneling
frequency A, becomes zero; thus, the transition point of the
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coupling constant between the delocalized and localized
phases for different environment baths can be determined by
increasing « in Eq. (8) until a critical value when 7 changes
from finite to zero.

The form of the introduced parameter &, in the generator
of unitary transformation is determined by letting H/|go)=0
as

Wy

& (10)

=wk+ nA’

This choice of & leads to
1 g , ,
Hi= 2 nAY “&lbj(o,—io) +bylo. +ia)], (1)
k Ok

and the matrix element of H; between |g,) and other eigen-
states of H|, to be vanished, (H}),,0=0, i.e., in the perturba-
tion treatment H | has no perturbative contribution to both the
ground state and the transition process between ground state
and excited states. Thus, H| is related only to the higher-
lying excited states of H|, and under renormalization should
be irrelevant to the ground state and the exciting process
from the ground state. Therefore, the effect of the coupling
term in the transformed Hamiltonian can be safely treated by
the perturbation theory because the infrared divergence is
eliminated by introducing the function &, in unitary transfor-
mation.

The total number of phonons of the environment bath is
usually temperature dependent. At low temperature, the mul-
tiphonon process is weak and the lowest-excited states are
|s2){0.}) and [s\)|1;), where |1,) is one phonon state with
ni=1 but n,,=0 for all k' # k. It’s easily to check that

(8olH3|g0) =0,
{0(s2|H3lg0 =0,
(14 (s1|H3|go) =0,

{0 (sl Hls |1, =0, (12)
and, since Hi|gy)=0, we have also

{0l(s2H1[go) =0,

(1el(s1|H1|go) = 0. (13)

Thus, we can diagonalize the lowest-excited states of H' and
rewrite it by means of projective description in Dirac nota-
tion as

1
H' == n8|go)gol + 2 EIEXE]
E

+terms with higher excited states. (14)

The variational ground-state energy is supposed to be E,
=(s5;|({0}H'|s1)]{0}). & can also be obtained by the varia-
tional principle to minimize E, and the result obtained in this
way is the same as Eq. (10).

The polaron transformation is widely used in literature.

The difference between the polaron transformation and our
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transformation is the form of the introduced parameter &, in
the generator of unitary transformation. In the polaron trans-
formation &,=1, which means that the phonons can follow
completely the intrasite pseudospin tunneling, but this should
not be the case when w;/A or w;/« is small. In spin-boson
model, the bosons (bath modes) follow the tunneling motion
only partly and there is a retardation effect. The low-
frequency behavior of the spectrum density function in this
model determines the long-time behavior of the two-state
system. All quantum dynamic properties are very sensitive to
the low-energy part in spectral structure, especially in the
sub-Ohmic case. On the other hand, in the high-frequency
limit, bath modes follow instantaneously to the tunneling
motions, whereas near the low-frequency limit nonadiabatic
modes couple weakly to the subsystem. In our transforma-
tion 0<§, <1, which means that the phonons follow the
tunneling motion only partly and there is a retardation effect.
In this sense, the theories using polaron transformation may
overestimate the effect of quantum fluctuations of the envi-
ronment, especially for the case when w;/A is small. Thus,
while all boson modes are treated by the function &, their
different contributions to the dressed two-state system have
been distinguished with respect to the scale of boson energy.
In this sense, the overestimate of quantum fluctuation effect
of the environment, especially for the case when w,/A is
small, can be overcome. In addition, the polaron transforma-
tion is divergent when the phonon energy is very small,
whereas in our transformation this divergence is eliminated
because of the chosen form of &.

The diagonalization of H' is as follows. Let |Ey),|E),- -
be the energy eigenstates of H’ and denote the ground state,
the low-excited states, and other higher-excited states, re-
spectively,

H'|Ey) = Eg|Ey),
H'|E) = E|E),

(15)

They form a complete set of states and, consequently, H' can
be expressed in the eigenstate representation,

H' = Eo|EgXE,| + X E|[EXE|+ --- . (16)
E

The energy eigenstates |g,) (n=0,1,2,--*) of H|, also form a
complete set of states,

Hy =2 (g, Hilg g8l (17)

n

where [go)=[s)[{0]), [g1) =[50, g2 =[sDI{1i}). -~
Since (g,,|H|+H,|go)=0, (m=0,1,2,--), H' and H| have
the same ground state, i.e.,

|Eo) =1g0)- (18)

Thus, we have
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1
Ey=(Eo|H'|Eg) = (golH'|g0) = - EUA (19)
and obtain Eq. (14). |g,) can be expanded by the energy
eigenstates of H’, and by neglecting the multiphonon process

the lowest-excited states of H|, are expanded through the
following transformation:!”

g1y = 2 x(E)|E), (20)
E

9200 = 2 y(E)|E). (21)
E

The inverse of the transformation formulas (20) and (21) is

|E> = X(E)|sz>|{0k}> + E yk(E)|51>| 1. (22)
k

Here the coefficients x(E) and y,(E) are given by

V2 -172
E)=]|1 —_— ,
*E) +E (E+ 7A/2 - wy)?
Vi
E)=—"""x(F), 23
W(E)= s lE) (23)

with V,=nAg. &/ w;. E’s are the diagonalized excitation en-

ergies of H' and they are the solutions of the equation
A Vi

_n= l—k =0 (24)

2 k E+ E??A — Wy

obtained by the normalization condition (E|E)=1. The real
and imaginary parts of the third term in left-hand side of this
equation can be calculated by the residue theorem as

Vi
r E+5 7]A w, * 10

~=R(Q) ¥ inQ), (25)

where
o f B +(Z>2z; 5= S0k
~w)=2a C% A, (26)
A =72 Vi - o) = f m B (A”f);)zém
- B)Ekl g B-w) = 2aw%@;—5f$f o, - Q).

(27)

Here P denotes a Cauchy principal value and a change of the
variable Q=FE+ 7A/2 is made in the calculations.

III. CORRELATION FUNCTIONS

In the studies of quantum dynamics in dissipative two-
state systems, the time evolution of state and the tunneling
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property are two principal aspects. If the system is prepared
in one of the two states at initial time and then let it evolve in
zero bias, the nonequilibrium correlation function is of pri-
mary interest,”!° whereas if the initial-state preparation is not
realizable, the interest then lies in the symmetrized equilib-
rium correlation function and the susceptibility.'®?’ Although
both the equilibrium and the nonequilibrium dynamics are of
interest for the different experimental realizations of two-
state systems, it is the nonequilibrium correlation function
from which the critical point of the coherent-incoherent tran-
sition can be directly derived. Therefore, the nonequilibrium
correlation function and the current correlation function are
chosen below as two typical quantum quantities to present
our analysis to investigate the quantum dynamics in these
systems.

The nonequilibrium correlation function is related to the
macroscopic quantum coherence problem and is defined as
the subsequent probability of system existing in an initially
prepared eigenstate of o, (say o,=+1),’

P(t) = {b,+ 1[{(+ l]e'g e

(28)

where [+1) i is the state
of bosons adjusted to the state of o,=+1. Since exp(A)]

=+ D{0}).

P(1) = ({0 }(+ 1]

o ™14+ {0

= 12 x*(E)exp[— i(E + pA/2)t] + 12 x*(E)expli(E
2 E 2 E

1 )
+ nA/2)t] = —jg dQe_’Q’<Q - 7A
47i

C
% | .
— +—@ dQe Q- pA
Q+i0" - wy 4mi) ¢
V2 -l
-k . 29

The integral can be proceed by calculating the residue of
integrand and, finally, we obtain the simple result

P(t) = cos(wyt)exp(— ¥1), (30)
where w, is the solution of equation
Q-nA-R(Q)=0. (31)

When w,=0, the decay of P(¢) is a pure exponential.!” Sub-
stituting wy=0 in Eq. (31), one can get a special value of
damping constant. For « less than this value, the solution of
w, is real and P(z) is the form of damped oscillation, but for
a larger than this value, the solution of w is imaginary and
one has an incoherent P(r); that is to say, this value of damp-
ing constant is the critical point «,. where there is a
coherent-incoherent transition. Thus, the critical point of
coherent-incoherent transition can be determined by letting
variable of trigonometric function in P() to be w;=0,
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7A + R(wy=0) =0. (32)
Thus, from Eq. (26), the coherent-incoherent transition point
is given by
1 fwc wl—S'BS—l -1
a,= < dg| . (33)
277A{ o (7A+B)°

The expression of ¢, only as function of the bare tunneling
A/w, can be obtained by combining Egs. (8) and (33) to
eliminate 7. In Sec. IV A, we will take the Ohmic bath as a
concrete example to discuss in detail the influence of « on
the behavior of P().

The Q factor has been also used in literatures® to deduce
the critical value of damping constant. From Eq. (30), the Q
factor of the tunneling oscillations is given by?%3

@ _ 7A+R(w)
y y

Q= (34)

The transition from coherent to incoherent dynamics occurs
at a, at which the Q factor of the tunneling oscillations van-
ishes.

The current correlation function,
AZ
?<Uy(t)cry(0) +0,(0)o,(1)),

(35)

€= G (0j(0) + 7)) =

is defined as correlation of the tunneling current j=%Aa'y and
its correlation time implies the coherent oscillations in the
position correlation function ({o,(¢),0.(0)}), therefore, can
predict correctly the coherent-incoherent transition.”> Thus,
the coherent-incoherent transition point can be investigated
by both Eq. (33) and the current correlation function (35),
and the results from these two calculations can prove each
other to verify the effectiveness of our analytical method.

To calculate the current correlation function, we take g as
the perturbation parameter and use the Green’s function
method to implement the perturbation treatment. The re-
tarded Green’s function is defined as

G(1) == i0(t)[oy(1),0,])", (36)

where
ol =etae™, (37)
o;(t) =exp(iH't)o} exp(-iH'1), (38)

and (...)" means the average with thermodynamic probabil-
ity exp(—=BH’). The Fourier transformation of G(z) is denoted
as G(w), which satisfies a chain of equation of motion.’® By
means of the cutoff approximation for the equation chain,

0G(@) = (o). H o)), (39)

at the second order of g, a set of equations is obtained and
from this set of equations the Green’s function can be evalu-
ated as
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6(w) w? 1 1
w) =" 2 2
A - nA—EwaH o+ nA—EwZ';)
k k k k
(40)
Thus, the current correlation function
N
Cit)=—— | dowexp(-io)Im G(w)
167) _,
1 [~ 2 {
_ w”yY(w)cos(wt) 4 @1)

4y [0 nA-R(@) P+ P0) "

According to the property of Pauli matrices, 4C(r)/ A? should
be unity at initial time =0 for any bath index S, which is
well preserved by Eq. (41). For a general value of o= «,,
C(¢) may contain both terms of the exponential decay and the
algebraic decay, but the latter dominates at the long-time
limit. The two relationships (30) and (41) allow us to identify
coherence for damped cases, in which oscillations maybe
masked by the incoherent background.

In our method, the approach treatment is perturbative in
g1 and at the end is equivalently perturbative in a because of
their relation given by the spectral density (2). The nonequi-
librium correlation function and the current correlation func-
tion are calculated to the second order of g;. By applying
unitary transformation and choosing the form of ¢ to find a
better way of dividing the transformed Hamiltonian into un-
perturbed and perturbative parts, the contributions of the per-
turbation to the ground-state correction and the exciting pro-
cess from ground state (nondiagonal term) are zero and the
expansion parameter (g.&/w;)? is smaller, which make the
perturbation treatment more efficacious and valid for a wider
range of coupling a< «,.

IV. DYNAMICAL AND OSCILLATORY BEHAVIORS

The form of simple power-law behavior of the spectral
density on frequency is defined by the index S in the expres-
sion of the spectral density (2). The index S=1 correspond-
ing to the linear dissipation is well known in the literatures as
the Ohmic case. The non-Ohmic bath consists of the sub-
Ohmic case 0 <S<1 and the super-Ohmic case S> 1. In this
section, by making use of the formulas in previous sections
to evaluate the current correlation function, the nonequilib-
rium correlation function, and the Q factor, we investigate
the dynamical properties and the phase transitions in dissipa-
tive two-state systems for various values of § in a unified
method.

A. Ohmic bath

The Ohmic form dissipation of two-state systems is ex-
perimentally the most relevant and theoretically the most in-
teresting and has been widely studied because of its impor-
tance of not only being applied to numerous physical and
chemical processes but also being a critical dimensionality,
distinguishing totally different behaviors for the super-
Ohmic and sub-Ohmic cases. A typical intriguing case de-
scribed by Ohmic dissipation is that a particle couples to
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electron-hole excitations of a bosonic environment or
equivalently a fermionic environment formed by conduction
electrons.'® For Ohmic bath, substituting S=1 into Egs. (8),
(26), and (27), we obtain

B ( aw, i W+ nA) 42)
7=exp ot A aln A )

2a(nA)? + 1A
R(e) = - a(?})[ . o nw(wc+71)]’(43)

w+7A | w4+ 7A o+ 7A Ao, - )

(7A)?

= 2amo———. 44
Y w) aﬂ-w(w+77A)2 (44)

The coherent-incoherent transition point . for Ohmic
case, according to Eq. (33), is determined as

ac=%<1+7]—A>. (45)

Combining Egs. (42) and (45) to eliminate 7, we finally
obtain «, only as function of the bare tunneling A/ w,

~ A
Qa)%a,—1)"%=e—. (46)
wC
At the scaling limit A/ w.<<1, a.=1/2. In fact, by substitut-
ing the expression (43) of R(w) into Eq. (31), we have

2aw, 2awy . wy(w,+ nA)

w(2)= (pA)?*| 1 -

w.+ nA " wy+ A nnA(wC -wy) |’ (“47)
and, therefore, wy— 0 if a— «.. Obviously, the solution of
w, is real when a<<ea, but is imaginary when a> a,. As «
increases to cross a,, the behavior of P(f) changes from co-
herent oscillation to incoherent relaxation. Figure 1(a) shows
the time evolution of the nonequilibrium correlation function
P(?) in the case of Ohmic dissipation for A/ w,.=0.1 and dif-
ferent values of the coupling constant «. By virtue of the
analytic expression of the nonequilibrium correlation func-
tion, we can reveal the oscillatory behavior even for a very
close to transition point .. The expanded view of P(z) for
A/w.=0.1 and a=0.5 (near «,) is shown in Fig. 1(b), and for
comparison in the vicinity of the critical value «, the results
of P(t) for a=0.5<a, and 0.51 > a, are plotted in inset in
this figure. One observes that the vibration period of P(r)
becomes larger as « increases to approach the critical point
a, since then wy— 0 and performs the exponential decay for
a larger than the critical point.

The Q factor in Ohmic case, according to its definition,
can be calculated by substituting Egs. (43) and (44) into Eq.
(34). Figure 2(a) illustrates the oscillation frequency w, and
damping coefficient vy, respectively, as functions of the cou-
pling constant «a for A,/w.=0.0003. For comparison with
results of numerical simulations,?° the calculated results for
A,/ 0,=0.05 and 0.2 are also plotted in this figure. Figure
2(b) shows the Q factor as function of the coupling constant
a in the cases of the renormalized tunneling frequency
A,/ w.=0.0003 and 0.2. The numerical data of Monte Carlo
simulation®® and the result of the path integral Q
=cot[ma/2(1-a)] (Refs. 7 and 35) are also plotted in this
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FIG. 1. (a) The time evolution of the nonequilibrium correlation
function P(7) in the case of Ohmic dissipation for bare tunneling
frequency A/w.=0.1 and different values of the coupling constant
a. (b) The expanded view of P(r) in the Ohmic case for a=0.5
(near «,). Inset: the results of P(¢) in the vicinity of the critical
value ¢, for a=0.5<a, and 0.51> «,.

figure for comparisons. As shown in the figure, the Q factor
decreases as the coupling constant « increases and vanishes
at the critical point «,, where the coherent-incoherent transi-
tion occurs. The oscillation frequency w, decreases to zero
faster than that of damping coefficient y as « increases to
approach the critical point. The critical point e, at the scaling
limit, the line shape of w,, y, and Q factor of our results are
in agreement with those of path-integral and Monte Carlo
simulations, but the dependence of the critical point on tun-
neling frequency is different. Figure 2(b) shows that the criti-
cal point «, increases as the tunneling frequency A, in-
creases, which is contrary to that of numerical simulations.2?
In view of the fact that the tunneling frequency A enhances
coherent oscillation of the system?*37 and the coupling con-
stant « acts against it, it is reasonable that the increase in the
tunneling frequency conduces to the increase in the critical

coupling constant «, in Ohmic case.
At the scaling limit A/ w,. <1, from Eq. (42) one obtains
77(1—(1)/a= é (48)

.

In this limit, the renormalized tunneling frequency ap-
proaches to zero (in other words, the system approaches to
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FIG. 2. (a) The oscillation frequency wy and damping coefficient
vy, respectively, as functions of the coupling constant « in the
Ohmic case for the renormalized tunneling frequency A,/w.
=0.0003, 0.05, and 0.2. (b) The Q factor as function of the coupling
constant « for the Ohmic bath in the cases of the renormalized
tunneling frequency A,/w,.=0.0003 and 0.2. The dot line is the
result of the path integral (Ref. 35) and the line with open square is
the result of Monte Carlo simulations (A/w,.=0.05) (Ref. 20).

the critical point of delocalized-localized transition) when
7=0. At the scaling limit, the expression (48) holds at the
critical point if and only if a=a;=1. When a< ¢, the renor-
malized tunneling frequency (the effective tunneling)

A al(l-a)
A= 77A=A<e—> .

c

(49)

This expression agrees with the result of the path-integral
method.”® The renormalized tunneling frequency is consid-
ered by scaling arguments3® to be the only energy scale of
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the dynamics at zero temperature other than the upper cutoff
@,

Under the second-order approximation, from Eq. (44),
one has y(7A)=amnA/2. Substituting Eq. (48) and the criti-
cal value a=a,=1/2 into this expression, the exponential

decay rate at the scaling limit is obtained as
emA?
y=

_4wc'

(50)

It agrees with result of noninteraction-blip approximation y
=mA?/2w, (Ref. 7) except for a constant e/2.

For finite bare tunneling A/ w,, Eq. (42) can be rewritten
as

o -l = @

ex — ] 51
w.+ A p<wc+ 7]A> 5D
Obviously, when a<<1 the solution of 7 is finite, and at «
=1 one has the solution =0, that is to say a;=1. In another
way, we rewrite Eq. (42) as

In
= —— (52)
In 7A o
wA7A 1 wA4AnA

and by letting 7»—0 the delocalized-localized transition
point «; also can be obtained as

In 7
A @
w+nA + w+nA

=1, (53)

o= lim
7—-0In 7+ In

which is consistent with results of the renormalization
group”’’” and the continuous infinitesimal unitary
transformations.>® In one word, at both the scaling limit and
the finite bare tunneling cases, we have a;=1 for Ohmic
bath.

The current correlation function for Ohmic bath can be
calculated by substituting the expressions (43) and (44) into
the integral (41). In evaluation of the integral, the upper cut-
off w, is used to determine the upper limit of the integration
variable. Figure 3(a) shows the current correlation function
as function of the evolution time Ar in the cases of A,/w,
=0.01 for different coupling constants @=0.2, 0.3, 0.4, and
0.5. As shown in the figure, for finite renormalized tunneling,
the oscillatory behavior of the current correlation function
can be clearly observed up to @=0.5, although its amplitude
decreases rapidly with increasing «, which indicates that in
Ohmic case the coherent-incoherent transition point a,
>1/2 for A,/ w,>0. The comparisons of the coherent oscil-
lation and the long-time decay of the current correlation
function between numerical method?® and our result in co-
herent phase are shown in Figs. 3(b) and 3(c). In these fig-
ures, the evolution time is scaled by the renormalized tunnel-
ing, the same as in the numerical simulations?® for
convenience of comparison, instead of the bare tunneling as
in Fig. 3(a). One can see that for small alpha, our results
agree very well with that of numerical simulations®? (for ex-
ample, for a=0.1, the two lines are almost congruent), which
is important for our theory as a potential method to be ap-
plied to investigate the absorption spectra and photolumines-
cence in quantum dots and other confined quantum systems

214301-7



WANG, HU, AND ZHENG

0.0 20 4.0 6.0 8.0
© At

FIG. 3. (a) The current correlation function for the Ohmic bath
as function of the evolution time Az in the cases of A,/ w.=0.01 for
different dampings a=0.2, 0.3, 0.4, and 0.5. (b) The current corre-
lation function for the Ohmic bath as function of the time A,z for
w./A,=50 and various dampings «=0.1, 0.2, 0.3, 0.4, and 0.5.
Inset: results of the numerical simulations (Ref. 23). (¢) The coher-
ent oscillation and the long-time decay of the current correlation
function for the Ohmic bath for w./A,=50 and various dampings
a=0.2, 0.3, and 0.4. Inset: results of the numerical simulations
(Ref. 23).

since in these systems the coupling constant « is usually
small. Deviations to some extent between our results and
numerical data appear for relatively larger a. Our method
may be less accurate in incoherent phase of &> «, due to the
cutoff approximation for the Heisenberg equation of motion
and the choice of the coupling strength as the perturbation

PHYSICAL REVIEW B 80, 214301 (2009)

parameter in perturbative treatment though our results of the
Q factors are well even for relatively larger coupling con-
stant, for example, in the cases of super-Ohmic baths. In
comparison with results of numerical methods, in which the
oscillatory behavior is visible up to = 0.4 (Refs. 20 and 23)
and the accuracy of numerical data does not allow one to
resolve oscillatory behavior anymore after o passes that
value,?” our theory can reveal the oscillatory behavior even
for a very close to transition point «, by virtue of the ana-
lytic expression of the current correlation function (41). The
coherent-incoherent transition point can be determined pre-
cisely at both the scaling limit and the finite renormalized
tunneling. The use of finite upper cutoff introduced in calcu-
lations results in the emergence of the serrate dentation on
the line of the current correlation function. This dentation is
common in previous works using finite cutoff scale w, (Refs.
23 and 40) and is more apparent for relatively larger A,/ w,
but disappears at the scaling limit.

Equations (42) and (46) are important expressions. By
these two formulas, the coherent-incoherent and the
delocalized-localized transition points in the Ohmic case can
be determined precisely at both the scaling limit and the
finite renormalized tunneling. Our theory, though simple, has
been successful in obtaining exact results of the transition
points at the scaling limit in Ohmic case @.=1/2 and =1,
which are the well-established values and well known as
results of nonperturbation. The dynamical behaviors of the
calculated nonequilibrium correlation function and current
correlation function consist well with that of previous works.
In addition, the evaluated susceptibility!>?’ exactly satisfied
the Shiba’s relation,”® and the calculated equilibrium corre-
lation function decayed algebraically in the long-time limit
the same as previous predictions.®!%** Taking all of these as
a check and verification of the effectiveness of our analytical
method, we further apply the method to study the two-state
systems with coupling to various environments.

B. Super-Ohmic bath

The cases S=2, 3, and 5 are the mainly concerned super-
Ohmic baths in literatures. The latter two are called solid-
state phonon heat bath and used to describe, for example, a
defect tunneling in a solid with coupling to acoustic
phonons. Because these cases have similar dynamic behav-
iors, for simplicity, we only chose S=2 as typical case to
study the effect of the super-Ohmic bath. For super-Ohmic
bath §=2, from Egs. (8), (26), and (27), we obtain

alw,+27A)  2anA 7A )
= expl - - 1 4
g exp( w.+ nA . nwc+ nA)’ (54)
2a(nA)? [ W~
Rlw)y=——"""— 1 A(2
(@) w(w+ 7A)? P + A2
A pAw, A
et A mhedwt g )] (55)
7A (wc+7A)

From Eq. (33), the coherent-incoherent transition point is
obtained as
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FIG. 4. The oscillation frequency w, and damping coefficient 7y, respectively, as functions of the coupling constant « in the cases of §=2
(left column) for A,/ w,=0.2(a,=2.61), 0.05(a,=4.78), 0.02(«.=8.47), and S=3 (right column) for A,/ w.=0.1 (a,=8.18), 0.2(a.=5.56),

and 0.4(a,.=4.41).

. 7A w, |\ (0> = 370w, - 6(7A))  3a(nA)’ w, + 7A
a.=-— In + . (56) n=exp| - - > In ,
27A\ w.+ A w.+ 7A 2w (w,.+ nA) w. 7A
Obviously, at the scaling limit a,. % — ( ln ) l'is very large. (59)
At the scaling limit A/ w, <1, from Eq (54) one obtains o, (w N 277A 277A o0+ 77A> 0
a.= In
2nA  pA C 29A\ w.+ A , A
77=exp{ (1+i1n77 )} (57) 7 7 7
w. o,

thus, a;— e at this limit. This result agrees with the conclu-
sion of previous works using various methods that there ex-
ists no delocalized-localized transition in a two-state system
with super-Ohmic bath; in other words, «; is at least very
large in this case.

For finite bare tunneling A/ w,, according to Eq. (54), the
delocalized-localized transition point is obtained by letting
n—0 as

In 7
a;=—lim =00, 58
1 " ?Z 1 7A 2nA+o, ( )
w+7]A wA+7A

Therefore, in both the finite bare tunneling and the scaling
limit cases, we have ;= (or at least very large) for super-
Ohmic bath S=2. Since in real systems, the value of « is not
so large, actually, the delocalized-localized transition will not
happen in the two-state system with super-Ohmic bath. This
supports the result obtained by mapping the two-state model
to the Ising model.*!

Similarly, for S=3, one has

Thus, aCOC(wAC)‘1 is very large at the scaling limit and the
system with solid-state phonon heat bath is never localized
too for any bare tunneling.

The Q factor, the nonequilibrium correlation function, and
the current correlation function for the case S=2 can be
evaluated similarly as in the previous subsection. Figure 4
shows oscillation frequency w, and damping coefficient 7y,
respectively, as functions of the coupling constant « in the
cases of S=2 (left column) for A,/w.=0.2(a,.=2.61),
0.05(c,=4.78), and 0.02(a,=8.47) and S=3 (right column)
for A,/ w,=0.1(c,=8.18), 0.2(a,=5.56), and 0.4(a,=4.41).
The change tendency of wy and v indicates the same critical
damping «. as that calculated by Eq. (56). Figure 5 shows
the time evolution of the nonequilibrium correlation function
P(7) in the case of §=2 for A/w,.=0.3 with different values
of the coupling constant . The current correlation function
as function of the time A,z in the cases of @=0.1 for different
renormalized tunneling A,/ w,=0.3, 0.4, and 0.5 is shown in
Fig. 6. In these figures, since « is less than the critical value
a,, the nonequilibrium correlation function and the current
correlation function obviously display oscillatory behaviors.
The time evolutions of the current correlation function and
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FIG. 5. The time evolution of the nonequilibrium correlation
function P(z) in the case of S=2 for A,=0.3 with different values of
the coupling constant @=0.2, 0.4, and 0.6.

the nonequilibrium correlation function in the cases of S=3
and S=5 are similar as those of S=2 and therefore has not
been illustrated. From Fig. 4, one observes that for super-
Ohmic bath §=2 and 3 the change tendency in w, and y has
been well described and, consequently, the coherent-
incoherent transition point can be determined exactly by
evaluating the Q factors, although in these cases the critical
value of coupling constant is larger.

C. Sub-Ohmic bath

The case 0<S<1 is called the sub-Ohmic bath. In this
section, we take S=1/2 as a typical case to discuss the dy-

namic behaviors of two-state systems with coupling to sub-
Ohmic bath. For §=1/2,

ﬂ:exp( 7]A+w —awﬁarctan\/ ) (61)

[ /_ IR

— ﬂln_\ﬂ W, — VW
W, \’/Zc‘l' \’z .
(62)

The coherent-incoherent transition point is

a.= —<m + 1/ Earctan\l ) (63)

and, obviously, at the scaling limit

—
\" A

ac:i7 \l_ (64)
a w

c

At the scaling limit A/ w,<<1, from Eq. (61) one obtains

= . 65
7 eXP< 5 \/—\, ) (65)

Thus,
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FIG. 6. The current correlation function as function of the time
At for the super-Ohmic bath S=2 in the cases of a=0.1 for differ-
ent renormalized tunneling A,/ w.=0.3, 0.4, and 0.5.

1 /A ( A )1-5 (66)
a.=——3=\/— *|— .
774{/; w, w

c c

By letting V"?yze"“x, it is easy to see that when

o« (67)
4

the solution of 7 in Eq. (65) is finite; otherwise, the solution
is 7=0.%> Therefore, when taking the equal sign this relation
gives the condition determining the critical point of
delocalized-localized transition at the scaling limit. Substitut-
ing this condition into Eq. (65), we have

el

W

=er!, (68)

and finally arrive at

4 A A\S
= e . (69)
me Vo, \wo,

When a< ¢, the system is in the delocalized state, whereas
when o= ¢; the system is in the localized state. This is in
agreement with results of numerical renormalization-group?’
and infinitesimal unitary transformations.*?

For finite bare tunneling, Eq. (8) cannot be used to di-
rectly calculate the delocalized-localized transition point be-
cause the integral in this equation is infrared divergent at 7
=0. The transition point for finite A/w,. will be discussed in
the next section by investigating the change tendency in 7
when characteristic parameter changes.

Figure 7 illustrates the Q factor as function of the cou-
pling constant for the sub-Ohmic bath S=1/2 in the cases of
renormalized tunneling frequency A,/ w,.=0.02 and 0.05. As
shown in the figure, the Q factor decreases as the coupling
constant « increases and vanishes at the critical coupling
constant «,, which indicates that the coherent-incoherent
transition occurs at a finite value of the coupling constant for
finite A/ w,.

For the sub-Ohmic bath, the critical coupling constant is
relatively small even for moderately large tunneling fre-
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FIG. 7. The Q factor as function of the coupling constant « for
the sub-Ohmic bath S=1/2 in the cases of renormalized tunneling
frequency A,/ w.=0.02 and 0.05.

quency (for example, «.=0.248 for A,/ w.=0.5); therefore,
our theory is suitable for studying the dynamical behaviors
of the system even in the vicinity of the critical value «, to
reveal the change in P(z) from coherent oscillation to inco-
herent exponential relaxation. This process is plotted in Fig.
8 by using the parameters A,/ w.=0.4 and different values of
the coupling constant «=0.02, 0.1, 0.2168, and 0.2169. From
this figure, one observes a coherent-incoherent transition at
the coupling constant 0.2168 <@ <<(0.2169. In fact, the cal-
culated value of a, by Eq. (63) for A/w.=04 is «a,
=0.216801.

The current correlation function as function of the time
A,t with the parameters A,/ w,=0.1 for different values of the
coupling constant =0.01, 0.06, and 0.1 is shown in Fig. 9.
As long as the coupling constant is relatively small, the sys-
tem is maintained in the coherent state and, consequently, the
current correlation function exhibits oscillatory dynamical
behaviors.

The evaluation results in the foregoing subsections have
shown that our theory describes well the dynamical behav-
iors and the phase transitions of the dissipative two-state sys-
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FIG. 8. Change in the dynamical behaviors of P(r) from coher-
ent oscillation to incoherent exponential relaxation in the vicinity of
the critical value «, with parameters A,/ w.=0.4 and «=0.02, 0.1,
0.2168, and 0.2169 for the sub-Ohmic bath S=1/2. In this case, the
calculated critical value «.=0.216801.
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FIG. 9. The current correlation function as function of the time
At in the cases of A,/w.=0.1 for different coupling constants «
=0.01, 0.06, and 0.1 for the sub-Ohmic bath S=1/2.

tems, especially in the Ohmic case. The change processes in
P(r) from coherent oscillation to incoherent exponential re-
laxation are very well represented in Ohmic and sub-Ohmic
cases.

V. PHASE DIAGRAM

To the dissipative two-state systems, study interests in lit-
eratures concentrate mainly on the dynamical behaviors and
the phase transitions, namely, the localized-delocalized and
the coherent-incoherent transitions.

At the scaling limit A/ w,<<1, for the coherent-incoherent
and the localized-delocalized transitions, besides forenamed
values S=1/2, 1, 2, and 3, Egs. (8) and (33) can also be
calculated exactly for, for instance, S=0, 1/3, 2/3, 4/3, 3/2,
and 5, since in these cases their denominators can be inte-
grated exactly and expressed by elementary functions. In
sub-Ohmic cases, similarly as in Sec. IV C, we obtain the
results as follows:

3\“"3 ( A )2/3
a.= — 5 (70)
877%/; (OB
9 ‘E A 2/3 1
m=4¥(—), =7 (71)
41e \ w, 3
—
313 (A )”3
a. = - 5 (72)
477:\5//; (O

=—. (73)

In all these cases, the critical values are in proportion to
(A/@,)'=5. In fact, for general values 0 <S< 1, the integrals
in Egs. (8) and (33) can be integrated as

—a B (S+152:5+ 25— ﬁ]
- . (74
7 exp{ (A (S + 1) 7
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A

where A’=A/w, and ,F, is the hypergeometric function. Af-
ter some straightforward calculations, it can be shown that
the phase boundaries for general value of bath index in sub-
Ohmic cases 0<<S<1 at the scaling limit yield for a univer-

sal exponential rule
A 1-S
ag &« (_> . (76)

c

Taking all the results above together, we show that at the
scaling limit the transition points and the system’s states are
as Table L.

These results indicate that the value S=1 is a “critical
dimensionality” and for S larger or smaller than this value
the behavior of the system is totally different.” At the critical
dimensionality, the Ohmic case, the incoherent or coherent
(the localized or delocalized) behavior of the system is de-
termined by whether the coupling is larger or smaller than
a,=1/2(ay=1).

For S=1, our results are consistent with that of the
functional-integral —approach,” whereas for S<1 the
functional-integral approach predicts a localized state for any
finite coupling constant at zero temperature. On the other
hand, the spin-boson model can be mapped onto a one-
dimensional Ising model with defects in the Ising system
corresponding to spin flips of the original spin. Analysis of
the Ising model by Kosterlitz using renormalization-group
method suggested the existence of phase transition for §
< 1.% Carrying over this result to the spin-boson model, the
existence of the localized-delocalized transitions for S<1
would be expected.3”*? Therefore, efforts are inspired to in-
vestigate the transitions directly from the spin-boson model.
Numerical simulation by the renormalization-group method
has provided evidence of phase transition for all S=1, and
the simulated data of the critical coupling «, closely follows
the power-law relation ;% A'~S for small bare tunneling,’’
which is in agreement with Eq. (76). Study by infinitesimal
unitary transformations has obtained an analytic expression
for a,, but the method is valid only at the scaling limit.*? In
comparison with these method, our method can obtain ana-
lytic expressions for ¢, and ¢; for any values of the tunneling
and the coupling constant.

In the case of finite bare tunneling, the critical value of
coupling constant of coherent-incoherent transition varies

T oA (S+ 1) = 28] Fy(S+ 1135+ 2:- )+ oFi(S+ 1255+ 23— 1)

; (75)

with the tunneling frequency. In Fig. 10(a), as in previous
works, we plot the dependence of the coherent-incoherent
transition point «, on the renormalized tunneling A, for dif-
ferent bath indices according to Egs. (45), (56), (60), and
(63). Since the renormalization factor 7 and, consequently,
the renormalized tunneling A, vary with the coupling con-
stant, the phase diagram in the a,~ A/ w, plane is of advan-
tage to directly exhibit phase boundary and critical value.
The dependence of the coherent-incoherent transition point
a, on the bare tunneling A/w, for different bath indices is
plotted in Fig. 10(b). The dependence of the coherent-
incoherent transition point «, on the bath index for different
renormalized tunneling A,, according to Eq. (33), is plotted
in Fig. 10(c) and the inset in this figure depicts the move
tendency of the phase boundary as the renormalized tunnel-
ing decreases to close the scaling limit. In these figures, for
the convenience of having a full view of the phase diagrams
for all bath indices, the ordinate is expanded into a wide
range of coupling constant, though as mentioned before the
results may be less accurate for larger «, and in the insets in
Fig. 10(b) the abscissa is expanded into A/w,= 1, which in
practice is already nonphysical. As shown in Fig. 10, the
increase in the bath index leads the phase boundary of the
coherent-incoherent transition to move to larger coupling
constant. The phase diagrams of super-Ohmic cases [even for
1 <8§5<2, see the case S=1.2 shown in Fig. 10(a)] are differ-
ent from that of S=1 case. As the renormalized tunneling A,
increases, «, increases monotonously for S=1, but for §
> la, decreases first until it reaches its minimum at a defi-
nite value of A, and thereafter increases. This definite value
of A, is the minimum point of @, and can be obtained by
applying the variational principle to Eq. (33) to minimize «,.
Let %:0, we get

fo <wc) [(A,)min+ﬁ]3d’8_0’ (77)

therefore, the minimum point (A,),;, is determined entirely
by bath index S. Figure 11(a) shows the minimum point
(A,) min as function of the bath indices. When S changes from
1 to 2, the minimum point (A,),;, changes from zero to 0.46.
In particular, for S little bit larger than 1, we call it the
over-Ohmic case, the minimum point (A,);, is small. In
order to show this case clearly, the dependences of a, on A,

TABLE I. The transition points and the system’s states at the scaling limit.

0<s<1 @ (2)1S
S=1 aL:%, a=1
S>1 a. ;== (or very large)

a=a, incoherence, a< a, coherence

a= gy localization, a<q; delocalization
az=; incoherence, a<< 3 coherence

a=1 loEalization, aﬁl c}elocalization
coherence and delocalization
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FIG. 10. (a) The dependence of the coherent-incoherent transi-
tion point «, on the renormalized tunneling A, for different bath
indices. (b) The phase diagram of the coherent-incoherent transition
in the a.~A/w, plane for different bath indices. (c) The depen-
dence of the coherent-incoherent transition point «. on the bath
index for different renormalized tunneling A,. Inset: the move ten-
dency of phase boundary as the renormalized tunneling decreases to
approach the scaling limit.

for $=1.01, 1.03, 1.05, and 1.1, according to Eq. (33), are
plotted in Fig. 11(b). This figure indicates that for appropri-
ate fixed values of a, there exist two critical values of renor-
malized tunneling (A,).; and (A,).,. As A, increases to cross
the first critical value (4,),, the state of the system changes
from its original coherent state to incoherent state, and at the
second critical value (A,),, the system re-enters the coherent
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FIG. 11. (a) The minimum point (A,)pi, (left) and the minimum
value of the critical coupling constant ()i, (right) as function of
the bath index. (b) The dependences of the coherent-incoherent
transition point «, on renormalized tunneling A, in the over-Ohmic
cases of §=1.01,1.03,1.05, and 1.1 according to Eq. (33). For ap-
propriate fixed values of «, there exist two critical values of renor-
malized tunneling and the system can re-enter between coherent
state and incoherent state.

state. In this process, if S is larger than but very close to 1,
the change in A, is small and its value is in the physical
meaningful range. For example, by using the input param-
eters @=0.564 and S=1.02, we obtain (A,),,;=0.01 and
(A,)2=0.03. Therefore, provided there exists a dissipative
two-state system coupled to an over-Ohmic bath with § litter
bit larger than 1, for an appropriate fixed value of «, by
increasing A, the system undergoes phase transition from
coherent state to incoherent state or reversely and can even
re-enter between the two states. Although a, changes with
A,, its minimum value (@), is determined only by the bath
index. For a given index S, substituting (A,),;, in Eq. (33),
one has

(ac)min = ac[(Ar)min]’ (78)

that is to say, for a fixed bath index the dissipative two-state
system is certainly in the coherent state if the coupling con-
stant « is smaller than (&,)yi,- The minimum value of cou-
pling constant (&), as function of the bath index is also
shown in Fig. 11(a). As shown in the figure, in super-Ohmic
case, ()i 18 so large (for example, (a,)p,=2.3 for $=2)
that for real systems the coherent-incoherent transition will
not occur in practice, which is similar to the delocalized-
localized transition, where the critical coupling constant, as
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FIG. 12. (a) The change tendency in the renormalization factor
n as function of the coupling constant « in the cases of A/w,
=0.1 and 0.2 for different bath indices. Inset: a zoom out view of
the change tendency of % for expanded range of « in the case S
=2 and A/w.=0.1. (b) The change in the renormalization factor 7
as function of bath index S for different couplings. The delocalized-
localized transition occurs only when S=1.

has been discussed in previous subsections, is also too large.
Therefore, it is generally accepted in literatures that for S
> 1, there exists no quantum phase transitions (though the
coherent-incoherent transition may exists for the over-Ohmic
case).

The delocalized-localized transition for finite bare tunnel-
ing, especially in the sub-Ohmic case, can be clearly identi-
fied by investigating the change tendency of 7. In Fig. 12(a),
the change tendency of 7 is plotted as function of the cou-
pling constant « in the cases of A/w.=0.1 and 0.2 for dif-
ferent bath indices. In this figure, 7 is calculated by Eq. (42)
for S=1, Eq. (54) for S=2, Eq. (59) for S=3, and Eq. (61) for
S=1/2, respectively. For the S=1/2 case, because of the
divergence of the terms in the right-hand side of Eq. (61) at
7=0, the smallest value of 7 is only calculated to 107, but
the change tendency of 7 is already quite distinct. One can
see that 7 decreases as « increases. In super-Ohmic case, 7
can be very small but never disappears for any finite value of
coupling constant, which can be seen clearly in the inset in
this figure by a zoom out view for an expanded range of a,
whereas in Ohmic case 7 reduces to zero always at a=1. In
sub-Ohmic case, 7 decreases rapidly and becomes zero at a
certain value of ¢;<<1 for finite bare tunneling, which indi-
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cates a transition between the delocalized and localized
states. When a<<¢;, >0 and the system is in the delocal-
ized state, whereas when a= ¢y, 7»=0 and the system is in
the localized state. These features can also be identified from
the change in 7 shown in Fig. 12(b), as function of bath
index § for different couplings. This figure shows that only
when S=1, does the delocalized-localized transition in the
system exist.

VI. CONCLUSION

By using the spin-boson model, an analytical approach is
developed to investigate the properties of the correlation
functions and the phase transitions in dissipative two-state
systems in a unified method for different bath indices with
the view of understanding the effects of environments and
tunneling on the systems. We have theoretically studied the
dynamical behaviors of the current correlation function and
the nonequilibrium correlation function, and analytic expres-
sions of these correlation functions are obtained by employ-
ing the Green’s function method and residue theorem. Their
behaviors of damped oscillation in coherent state and expo-
nential relaxations in incoherent state are presented even for
the coupling constant very close to the transition point. This
analytical theory allows us to obtain the analytical expres-
sions of the transition points for various bath indices and,
therefore, the critical points and the phase boundaries of
coherent-incoherent and delocalized-localized transitions can
be determined precisely at both the scaling limit and the
finite bare tunneling.

Our results of the dynamical behaviors of the current cor-
relation function and the nonequilibrium correlation function
are consistent with those of previous works. The calculation
results show that for super-Ohmic baths, there exists no
quantum phase transitions and the system is always in coher-
ent and delocalized state; whereas for Ohmic and sub-Ohmic
baths, the incoherent or coherent (the localized or delocal-
ized) state of the system is determined by weather the cou-
pling is larger or smaller than the critical value a.(q;). In
particular, in Ohmic case, some well-known results are ob-
tained exactly, including the well-established values ;=1
and a.=1/2 at the scaling limit. In sub-Ohmic cases 0<<S
<1 at the scaling limit, the universal exponential rule «,,
o (wAr)l‘S is obtained. In the over-Ohmic case, for an appro-
priate fixed value of coupling constant, the system can even
re-enter between coherent and incoherent states.

The validity of our theory has been discussed and mani-
fested by the success in reproducing some well-established
values, especially in the Ohmic case. Due to the choice of the
coupling strength as the perturbation parameter in perturba-
tive treatment, our results are more suitable in the relatively
smaller coupling constant regime, which is significant for our
theory as a potential method to be applied to investigate the
absorption spectra and photoluminescence in quantum dots
and other confined quantum systems since in these systems
the coupling constant is usually small, although some of our
results are well even for relatively larger coupling constant.

In this paper, we restrict our statements only at the zero
temperature, but the effect of finite temperature on this
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model is an issue of much concern. The study for finite tem-
perature is in progress and our preliminary investigation
shows that, for example, a, and «; decrease as the tempera-
ture increases, and both the specific heat and the entropy are
power function of temperature with powers for Ohmic and
sub-Ohmic baths in the low-temperature region. Further in-
vestigation in this direction, for example, the analytical ex-
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pression of temperature dependence of critical points, is
needed.
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